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Abstract

Bartonellae are mammalian pathogens vectored by blood-feeding arthropods. Although of increasing medical importance, little is

known about their ecological past, and host associations are underexplored. Previous studies suggest an influence of horizontal gene

transfers in ecological niche colonization by acquisition of host pathogenicity genes. We here expand these analyses to metabolic

pathways of 28 Bartonella genomes, and experimentally explore the distribution of bartonellae in 21 species of blood-feeding

arthropods. Across genomes, repeated gene losses and horizontal gains in the phospholipid pathway were found. The evolutionary

timing of these patterns suggests functional consequences likely leading to an early intracellular lifestyle for stem bartonellae.

Comparative phylogenomic analyses discover three independent lineage-specific reacquisitions of a core metabolic gene—

NAD(P)H-dependent glycerol-3-phosphate dehydrogenase (gpsA)—from Gammaproteobacteria and Epsilonproteobacteria.

Transferred genes are significantly closely related to invertebrate Arsenophonus-, and Serratia-like endosymbionts, and mammalian

Helicobacter-like pathogens, supporting a cellular association with arthropods and mammals at the base of extant Bartonella spp.

Our studies suggest that the horizontal reacquisitions had a key impact on bartonellae lineage specific ecological and functional

evolution.
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Introduction

The increased availability of whole-genome data is providing

more comprehensive insights into microbial evolution (Toft

and Andersson 2010). One phenomenon of bacterial evolu-

tion concerns a process known as horizontal gene transfer

(HGT), where bacteria transfer genetic material to related or

to unrelated bacterial lineages (Doolittle 1999; Doolittle et al.

2003). From a biological perspective, HGT is vital for the orig-

ination of new bacterial functions, including virulence, patho-

genicity, or antibiotic resistance (Koonin et al. 2001; Gophna

et al. 2004; Barlow 2009).

Instances of HGT also contain important information about

evolutionary events in the bacterial lineage. Specifically,

uneven distribution patterns of genes across lineages speak

not only to the potential presence of HGT but also to its fre-

quency throughout lineage evolution. Depending on the evo-

lutionary history posttransfer, an HGT event may be

informative about the directionality and mode of transfer,

allowing identification of donor and recipient genomes.

Because many bacteria have niche preferences (e.g., intra-

cellular or extracellular habitat, host species range, tissue tro-

pism, etc.), the identification of the donating lineage may

provide specific information about the nature of the environ-

ment the exchange took place in. This is particularly interesting

for intracellular pathogens, as it implies HGT to have occurred

in a specific environment—the host cells. The taxonomic
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identification of putative bacterial donors therefore allows in-

ferences about the ancestral bacterial community composition

at the time of exchange, although the extant host range and

microbiome diversity may have changed.

With this in mind, we analyzed 28 currently available ge-

nomes of the bacteria Bartonella for HGT events. Bartonella

species are Gram-negative Alphaproteobacteria and are

thought to persist mainly as facultative intracellular invaders.

They have been classified as emergent pathogens and are

ubiquitously associated with mammals, where they parasitize

erythrocytes and endothelial cells (Pulliainen and Dehio 2012).

More than half of the known Bartonella species are pathogenic

to humans, and clinical manifestations vary from acute intraer-

ythrozytic bacteremia to vasoproliferative tumor growth

(Kaiser et al. 2011; Harms and Dehio 2012). Although it is

known that bartonellae readily straddle the boundary between

mammals and invertebrates, their ecological past remains ob-

scure (Chomel et al. 2009). Phylogenetically, bartonellae form

a derived monophyletic clade within the mostly plant associ-

ated Rhizobiales (Gupta and Mok 2007; Engel et al. 2011; Guy

et al. 2013). Bartonellae have been increasingly detected in a

broad range of blood-feeding or biting insects, and recent re-

search on their diversity in blood-feeding insects suggests an

early association to fleas (Tsai et al. 2011; Morick et al. 2013),

but the full range of invertebrate associations is still

underexplored.

Evidence for HGT in bartonellae has been found in previous

studies, which mainly concentrated on the identification of

gene transfer agents involved in the spread of known host

adaptability and pathogenicity genes, including the T4SS se-

cretion system (VirB, Trw, and Vbh) (Berglund et al. 2009;

Saisongkorh et al. 2010). Surprisingly, little information

exists on the horizontal transfer of other, more fundamental

operational genes (i.e., metabolic genes), which may also have

implications for host-adaptation. Specifically, bartonellae are

thought to be in the early stages of a transition to stable

intracellularity (Toft and Andersson 2010). Although they

are stealthy pathogens in their mammalian hosts, and can

survive and reproduce intra- and extracellularly, they have

also been discussed as intracellular endosymbionts in their

insect hosts (e.g., fleas, ked flies, bat flies) (Tsai et al. 2011).

This transitional lifestyle has genomic ramifications, which

have been associated with processes of gene loss, HGT, and

recombination that specifically affect genes coding for cell

membrane formation (outer surface structures), or intermedi-

ate metabolism (Zientz et al. 2004; Toft and Andersson 2010).

Consequently, exploring the signature, provenance, and order

(timing) of HGT events in metabolic pathways may be crucial

in understanding the particular steps involved in the develop-

ment of an intracellular lifestyle in bartonellae.

We here present horizontal and vertical patterns in the evo-

lution of the core metabolic phospholipid pathway in barto-

nellae. Specifically, we employed an initial discovery screen for

HGT, followed by comparative genomic analyses and

validation, phylogenetics and experimental approaches to ex-

plore the evolutionary successions of gains and losses of genes,

with the goal to elucidate the ancestral and extant biological

associations of bartonellae on organismal and cellular levels.

Materials and Methods

Taxon Sampling

Genomic data of Bartonella and other bacterial organisms re-

lated to this study were downloaded from the National Center

for Biotechnology Information (NCBI) GenBank (http://www.

ncbi.nlm.nih.gov/, last accessed August 15, 2014) or from the

website of the Bartonella Group Sequencing Project, Broad

Institute of Harvard and the Massachusetts Institute of

Technology (http://www.broadinstitute.org/, last accessed

August 15, 2014). Bartonella species were grouped into

four lineages (L1–L4) plus B. tamiae and B. australis, following

the current taxonomy (Engel et al. 2011; Pulliainen and Dehio

2012; Guy et al. 2013). For the purpose of this study, we will

refer to all bartonellae except B. tamiae as eubartonellae. This

is based on the recognition that B. tamiae has been described

as clearly distinct from all other currently known bartonellae

lineages (Kosoy et al. 2008; Guy et al. 2013). A total of 28

Bartonella species were examined in this study (table 1).

BLAST Hit Distribution Analysis of Bartonella
Genomes—Initial Discovery Screen

Initial discovery analysis of putative HGT events in metabolic

pathways was assisted by an automated pipeline (available in

the Dittmar Lab: https://github.com/DittmarLab/HGTector, last

accessed August 15, 2014). This pipeline is based on a com-

putational method of rapid, exhaustive, and genome-wide

detection of HGT, featuring the systematic analysis of BLAST

hit distribution patterns combined with a priori defined hier-

archical evolutionary categories (Zhu et al. 2014). Batch

BLASTP of Bartonella protein-coding genes was performed

against the entire NCBI nr database (E value cutoff = 1� 10�5,

other parameters remain default). Genes that have less than a

statistically relevant threshold of the expected number of hits

based on known close relatives of Bartonella, but meanwhile

show multiple top hits from taxonomically distant organisms

(non-Rhizobiales groups), were considered to be candidates of

HGT-derived genes and were subject to further phylogenetic

analyses (see below) (see Zhu et al. 2014 for details on pipe-

line). Particular attention was paid to genes involved in the

core central intermediate metabolism and cell wall formation,

which have been identified in previous studies on bacterial

metabolism (Zientz et al. 2004).

Phylogenetic Analyses and Validation of Horizontally
Transferred Genes

Phylogenetic analyses were employed to validate the putative

horizontal and vertical histories of the genes identified in the
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initial discovery screen. Phylogenetic patterns nesting a

Bartonella gene within a homologous gene clade of a candi-

date donor group, or as strongly supported sister group of a

candidate donor group, were considered significant evidence

supporting the horizontal transfer from this particular donor

to Bartonella (Koonin et al. 2001; Nelson-Sathi et al. 2012;

Husnik et al. 2013; Schonknecht et al. 2013). Nucleotide se-

quences of metabolic genes of interest (i.e., phospholipid

pathway) were extracted from Bartonella genomes as well

as genomes of selected organisms that represent the putative

donor group and its sister groups. Sequences were aligned in

MAFFT version 7 (Katoh and Standley 2013), using the L-INS-i

algorithm. The MAFFT program was called from the

“Translational Align” panel of Geneious 6.1 (Biomatters

2013). Alignment edges were trimmed manually, if needed.

The phylogenies of single-gene families were reconstructed

based on nucleotide and amino acid sequence alignments

(to check for congruence) in a Bayesian Markov chain

Monte Carlo (MCMC) statistical framework using MrBayes

3.2 (Ronquist et al. 2012), as well as a maximum likelihood

(ML) method implemented in RAxML 7.7 (Stamatakis 2006).

The Bayesian MCMC runs had a chain length of 20 million

generations, with the sample frequency set as 1,000. The op-

timal nucleotide substitution models for all three codon posi-

tions were computed in PartitionFinder 1.1 (Lanfear et al.

2012). Three independent runs were performed for each

data set to ensure consistency among runs. Trace files were

analyzed in Tracer 1.5 (Drummond and Rambaut 2007) to

check for convergence in order to determine a proper burn-

in value for each analysis. A consensus tree was built from the

retained tree-space, and posterior probabilities are reported

per clade. The ML was run implementing the GTR + G model

(for all codon positions) and a bootstrap analysis was per-

formed to gauge clade support.

Survey of Genomic Environments

In order to determine the frequency, components, and

boundaries of the putatively horizontally transferred genetic

material, genomic environments were manually examined in

Table 1

Basic Information of Bartonella Genomes and Corresponding Samples Assessed in This Study

Lineage Species Strain Size (Mb) Host Country Year PubMed GenBank Acc. No.

L4 B. alsatica IBS 382 1.67 Rabbit (Oryctolagus cuniculus) France 1998 10028274 AIME01000000

B. florenciae R4 (2010) 2.05 Shrew (Crocidura russula) France 2010 —a CALU00000000

B. birtlesii LL-WM9 1.92 Mouse (Apodemus sylvaticus) The United States 2002 20395436 AIMC00000000

B. sp. DB5-6 — 2.15 Shrew (Sorex araneus) Sweden 1999 12613756 AILT00000000

B. taylorii 8TBB 2.02 Vole (Microtus agrestis) The United Kingdom 2001 17096870 AIMD00000000

B. vinsonii Pm136co 1.86 Squirrel (Spermophilus beecheyi) The United States 1999 12574261 AIMH00000000

B. grahamii as4aup 2.37 Mouse (Apodemus sylvaticus) Sweden 1999 12613756 NC_012846-47

B. rattimassiliensis 15908 2.17 Rat (Rattus norvegicus) France 2002 15297537 AILY00000000

B. queenslandensis AUST/NH15 2.38 Rat (Rattus leucopus) Australia 1999 19628592 CALX00000000

B. rattaustraliani AUST/NH4 2.16 Rat (Rattus tunneyi) Australia 1999 19628592 CALW00000000

B. elizabethae F9251 1.98 Human (Homo sapiens) The United States 1986 7681847 AIMF00000000

B. tribocorum CIP 105476 2.64 Rat (Rattus norvegicus) France 1997 9828434 NC_010160-61

B. koehlerae C29 1.75 Cat (Felis catus) The United States 1999 10074535 —b

B. henselae Houston-1 1.93 Human (Homo sapiens) The United States 1990 1371515 NC_005956

B. quintana Toulouse 1.58 Human (Homo sapiens) France 1993 15210978 NC_005955

B. senegalensis OS02 1.97 Soft tick (Ornithodoros sonrai) Senegal 2008 23991259 CALV00000000

B. washoensis Sb944nv 1.97 Squirrel (Spermophilus beecheyi) The United States 2002 12574261 AILU00000000

B. doshiae NCTC 12862 1.81 Vole (Microtus agrestis) The United Kingdom 1993 7857789 AILV00000000

L3 B. rochalimae ATCC BAA-1498 1.54 Human (Homo sapiens) The United Statesc 2007 17554119 FN645455-67

B. sp. 1-1C — 1.57 Rat (Rattus norvegicus) Taiwan 2006 19018019 FN645486-505

B. sp. AR 15-3 — 1.59 Squirrel (Tamiasciurus hudsonicus) Japand 2009 19331727 FN645468-85

B. clarridgeiae 73 1.52 Cat (Felis catus) France 1995 9163438 NC_014932

L2 B. bovis 91-4 1.62 Cattle (Bos taurus) France 1998 11931146 AGWA00000000

B. melophagi K-2C 1.57 Sheep ked (Melophagus ovinus) The United States 2003 —e AIMA00000000

B. schoenbuchensis R1 1.67 Deer (Capreolus capreolus) Germany 1999 11491358 FN645506-24

L1 B. bacilliformis KC583 1.45 Human (Homo sapiens) Peru 1963 1715879 NC_008783

B. australis Aust/NH1 1.6 Kangaroo (Macropus giganteus) Australia 1999 18258063 NC_020300

B. tamiae Th239 2.26 Human (Homo sapiens) Thailand 2004 18077632 AIMB00000000

NOTE.—Data were collected from NCBI or original publications, or calculated in Geneious.
aDOI:10.4056/sigs.4358060. Not available in PubMed.
bDownloaded from the Broad Institute website. Not available in GenBank.
cAfter traveling to Peru.
dImported from United States.
eFeldgarden M, et al. Unpublished data.
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Geneious 6.1 (Biomatters 2013). Our assumptions are that

multiple independent transfers of a gene would likely result

in different gene environments being affected. Likewise, if

different Bartonella species share the same gene environment

adjacent to horizontally transferred genetic material, and the

transferred genes follow the previously detected vertical evo-

lutionary pattern for bartonellae, presumably a single ancestral

HGT event can be inferred for all species in that lineage.

Putatively HGT-derived genes and their adjacent genomic el-

ements were identified in recipient and donor genomes and

compared across species and within lineages. Results from this

analysis were mapped onto the Bartonella species tree (see

below).

Molecular Evolution Analyses

Selection analyses were carried out to gage selective pressures

operating on all genes in the phospholipid pathway. Selection

was assessed using the ML method in the Codeml program of

the Phylogenetic Analysis by Maximum Likelihood (PAML) 4.7

package (Yang 2007). As the first step, an analysis under the

one-ratio model (M0) was performed to estimate a global o
value (dN/dS ratio) across the phylogenetic tree. Global selec-

tive pressures were assessed using the site models (M1a, M2a,

M8, and M8a). Evolutionary rates of particular branches of

interest (o1) versus the background ratio (o0) were computed

using the branch model (model = 2). Selective pressures oper-

ating on subsets of sites of these branches were calculated

using the branch-site models (model A and A1). The signifi-

cance of change of o value and evidence of positive selection

was assessed using the likelihood ratio test. Positive sites were

identified using the Bayes Empirical Bayes (BEB) analysis (Yang

et al. 2005).

The tertiary structure of the GpsA (NAD(P)H-dependent

glycerol-3-phosphate dehydrogenase) protein in Coxiella bur-

netii (Gammaproteobacteria: Legionellales) was used to

model the position of the identified sites with positive selec-

tion in horizontally transferred gpsA genes (Seshadri et al.

2003; Minasov et al. 2009).

The possibility that the horizontally acquired gpsA genes

underwent convergent evolution in Bartonella, relative to their

ancestors was explored. Potential ancestral states of the gpsA

genes before HGT were reconstructed under model A in

Codeml of PAML (see above). The sequence was then com-

pared with the consensus sequence of extant Bartonella spe-

cies. A statistical approach recently introduced by Parker et al.

(2013) was applied to identify the signatures of convergent

evolution of gpsA versions after horizontal acquisition. In brief,

this method is based on the significance of differences in site-

wise log-likelihood supports among a commonly accepted

species tree and given alternative convergent topologies

under the same substitution model.

Phylogenetic Analysis of Bartonella Species

In order to parsimoniously map HGT events to the evolution-

ary history of bartonellae, phylogenetic relationships among

Bartonella species were inferred using standard phylogenetic

and phylogenomic approaches as follows:

1. Phylogenomic analysis: The proteomes of 23 annotated
Bartonella genomes were downloaded, from which ortho-
logous groups (OGs) were identified using OrthoMCL 2.0
(Li et al. 2003) with default parameters (BLASTP E value
cutoff = 1�10�5, percent match cutoff= 80%, MCL in-
flation parameter = 1.5). OGs that have exactly one
member in each and every genome were isolated, result-
ing in 516 OGs. Members of each of these OGs were
aligned in MAFFT (Katoh and Standley 2013) and refined
in Gblocks 0.91b (Castresana 2000) to remove problem-
atic regions. An optimal amino acid substitution model for
each OG was computed in ProtTest 3.3 (Darriba et al.
2011) using the Bayesian information criterion. The 516
alignments were concatenated into one data set, based on
which a phylogenetic tree was reconstructed using the ML
method as implemented in RAxML (Stamatakis 2006) with
100 fast bootstrap replicates. Bartonella tamiae was used
as an outgroup, with all other bartonellae treated as
ingroup.

2. Standard phylogenetic analysis: Five additional species
could not be included in above approach, as their prote-
omes are not available from GenBank. To explore and
confirm the phylogenetic positions of these Bartonella spe-
cies, a separate analysis following previously outlined
approaches (see above) was performed using six com-
monly used gene markers (Inoue et al. 2010; Sato et al.
2012; Mullins et al. 2013) from 28 Bartonella genomes (B.
tamiae included in ingroup) and seven outgroup genomes,
which represent close sister genera of Bartonella (supple-
mentary table S1, Supplementary Material online) (Gupta
and Mok 2007; Guy et al. 2013).

Experimental Genotyping

In order to further explore the distribution of Bartonella clades

with HGT-derived metabolic genes in blood-feeding insects,

we screened a global sampling of 21 species of Siphonaptera

and Hippoboscoidea for gpsA sequences (table 2). All of these

samples had been positive for Bartonella gltA gene and 16S

rRNA detection by polymerase chain reaction (PCR) in previous

analyses (Morse et al. 2012, 2013). Genomic DNA was ex-

tracted from each individual specimen, using the DNeasy

Blood & Tissue Kit (Qiagen Sciences Inc., Germantown, MD),

following the animal tissue protocol. The quality and concen-

trations of DNA were assessed with a NanoDrop spectrometer

(Thermo Fisher Scientific, Wilmington, DE). Bacterial gpsA di-

versity was assessed by amplification of gpsA genes from each

sample using specific primers and reaction conditions:

Helicobacter-derived gpsA (He) (see Results) forward: 50-ATG

AAA ATA ACA RTT TTT GGW GGY GG-30, reverse: 50-TTA

Horizontal gene transfer and ecological niche preference in Bartonella GBE
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ATA CCT TCW GCY ACT TCG CC-30; Enterobacteriales-de-

rived gpsA (Ar/Se) forward: 50-GGT TCT TAT GGY ACY GCW

TTA GC-30, reverse: 50-TAR ATT TGY TCG GYA ATT GGC ATT

TC-30. Subsequent TA cloning (if applicable) was performed to

isolate amplicons. Based on previous studies of the microbial

diversity of bat flies, we expect a subset of species to harbor

Arsenophonus and like organisms (ALOs) as endosymbionts

(Morse et al. 2013; Duron et al. 2014). In these species, we

specifically targeted Arsenophonus-type gpsA for comparative

purposes. Sequence analysis and phylogenetic analysis fol-

lowed the standard protocols described above.

Results

The initial discovery screen revealed several candidates for pos-

sible horizontal transfer in a variety of metabolic pathways

(e.g., peptidoglycan biosynthesis; glutamate/aspartate trans-

port). However, the phospholipid pathway stood out, in that

several fundamental genes involved in this pathway show pat-

terns of repeated homologous replacements from identifiable

sources outside Alphaproteobacteria, and/or gene loss (fig. 1).

These genes are: 1) The gpsA gene, which is a chromosomal

minimal core gene encoding NAD(P)H-dependent glycerol-

3-phosphate (G3P) dehydrogenase, an enzyme that is essen-

tial to the synthesis of bacterial membrane lipids; 2) the glpK

gene (glycerol kinase), which encodes an enzyme that is

located in the cell membrane and catalyzes the Mg2+-ATP-

dependent phosphorylation of glycerol to G3P; and 3) the

Glp system (encoded by genes glpS-T-P-Q-U-V), an ATP-bind-

ing cassette transporter (ABC transporter) that is responsible

for importing extracellular glycerol (Ding et al. 2012).

Loss of glpK and Glp System Precedes Loss of gpsA

Results of BLAST-based and phylogenetic approaches reveal

a pattern of additional gene losses in a core

Table 2

PCR-Verified gpsA Types in Bartonella-Positive Insect Samples

Family Species Mammalian Host Species Location Detected gpsA

Origin GenBank Acc. No.

Keds

Hippoboscidae Lipoptena cervi Odocoileus sp.(deer) The United States He KJ606299

Bat flies

Streblidae Trichobius frequens Unknown (glue trap) Puerto Rico None —

Streblidae Paradyschiria lineata Noctilio leporinus (bulldog bat) Panama Ar KJ606300

Streblidae Trichobius corynorhinus Corynorhinus townsendii (vesper bat) The United States Ar KJ606301

Streblidae Trichobius adamsi Macrotus waterhousii (leaf-nosed bat) Dominican Republic Ar KJ606302

Nycteribiidae Leptocyclopodia sp. nov. Harpionycteris whiteheadi (fruit bat) Philippines Ar KJ606303,KJ606321

Nycteribiidae Eucampsipoda africana Rousettus aegyptiacus

(Egyptian fruit bat)

Kenya Ar KJ606304

Nycteribiidae Phthiridium sp., scissa group Rhinolophus pearsoni

(Pearson’s Horseshoe bat)

Laos Ar KJ606305

Streblidae Unidentified bat fly Unknown French Guiana Ar KJ606320

Fleas

Ischnopsyllidae Ischnopsyllus variabilis Myotis daubontoni (vesper bat) Switzerland Ar KJ606306

Ischnopsyllidae Ischnopsyllus indicus Pipistrellus javanicus (vesper bat) Philippines Ar KJ606307

Ischnopsyllidae Dampfia grahami grahami Eptesicus matroka (vesper bat) Madagascar Ar KJ606308

Ceratophyllidae Kohlsia sp. — Mexico Ar KJ606309

Ceratophyllidae Eumolpianus sp. — — Ar KJ606310

Ceratophyllidae Megabothris walkeri Microtus agrestis (vole) Finland Ar KJ606311

Ceratophyllidae Nosopsyllus laeviceps ellobii Meriones unguiculatus (gerbil) Mongolia Ar KJ606312

Ceratophyllidae unidentified ceratophyllid flea — The United States Ar KJ606313

Leptopsyllidae Pectinoctenus lauta Cricetulus migratorius (hamster) Xinjiang, China Ar KJ606314

Leptopsyllidae Leptopsylla nana Cricetulus migratorius (hamster) Xinjiang, China Ar KJ606315

Leptopsyllidae Ophthalmopsylla kiritschenkovi Phodopus roborovski (hamster) Mongolia Ar KJ606316

Leptopsyllidae Mesopsylla hebes clara Allactaga bullata (jerboa) Mongolia Ar KJ606317

Rhopalopsyllidae Ectinorus onychius onychius Loxodontomys micropus (mouse) Argentina Ar KJ606318

Rhopalopsyllidae Ectinorus lareschiae Phyllotis xanthopygus (mouse) Argentina None —

Rhopalopsyllidae Polygenis sp. — — None —

Stephanocircidae Craneopsylla minerva wolffheuglia Ctenomys sp. (tuco-tuco) Argentina None —

Pulicidae Xenopsylla conformis conformis Meriones meridianus (gerbil) Mongolia Ar KJ606319

Note.—“None” indicates negative for gpsA, whereas positive for Bartonella (=lineage 3 bartonellae).
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alphaproteobacterial metabolic pathway. Specifically, key

genes involved in the glycerol pathway are ancestrally lost in

the bartonellae. Only the B. tamiae genome, the most basal

Bartonella species, contains glpK. However, phylogenetic anal-

ysis places this copy closely related to Enterobacteriaceae,

which is suggestive of a horizontal origin. This, together

with the complete absence of glpK and the Glp system in

extant eubartonellae, supports a loss of the glycerol pathway

at the base of all currently known bartonellae, preceding the

gpsA loss (fig. 2). The absence of GlpK and the Glp system

precludes the ability of eubartonellae to utilize extracellular

glycerol as a source of G3P (fig. 1). No other functional ho-

mologs of these genes are known, or have been found in our

genomic analysis.

Multiple Origins of Bartonella gpsA Genes

BLAST-based and phylogenetic analyses reveal four origins of

gpsA genes among Bartonella genomes (fig. 2 and supple-

mentary figs. S1 and S2, table S2, Supplementary Material

online). Known functional equivalents (not homologs) of bac-

terial GpsA (G3PDH), such as archaeal EgsA (G1PDH), are not

present in any of the genomes (Koga et al. 1998). No

Bartonella species has more than one copy of gpsA. Only

the earliest diverging B. tamiae (Guy et al. 2013) contains a

gpsA gene close to those of other Rhizobiales (fig. 3A).

Specifically, B. tamiae is placed as a sister group to

Brucellaceae (Brucella and Ochrobactrum), within the

Rhizobiaceae (Rhizobium, Agrobacterium, and

Sinorhizobium). This topology mirrors our current knowledge

of Rhizobiales and Bartonella evolution (Gupta and Mok 2007;

Munoz et al. 2011).

Bartonella bacilliformis (lineage 1), and all members of lin-

eage 2 (B. bovis, B. melophagi, and B. schoenbuchensis)

possess a gpsA that nests strongly supported within a genus

of Epsilonproteobacteria, namely Helicobacter (fig. 3B). In

the phylogenetic analysis all Helicobacter-derived gpsA (He)

genes form a strict monophyletic group, with lineage 1 and

lineage 2 split at the base. Its immediate sister group is a clade

of four Helicobacter species (fig. 3B). The general structure of

the Helicobacteraceae clade resembles the species tree of this

family from previous studies (Dewhirst et al. 2005; Gupta

2006; Munoz et al. 2011).

Lineage 3 bartonellae (B. clarridgeiae, B. rochalimae, B. sp.

1-1C, and B. sp. AR 15-3) lack any identifiable homolog of

gpsA.

Bartonella australis and all members of lineage 4 (table 1)

possess gpsA genes, which were captured from the gamma-

proteobacterial Enterobacteriales. These gpsA genes were

transferred in separate instances, as B. australis gpsA has

high sequence similarity and phylogenetic affiliation with

Serratia species [gpsA (Se)], whereas all available representa-

tives of lineage 4 contain an gpsA gene [gpsA (Ar)] that is

closely related to that of Arsenophonus type bacteria (ALOs)

(fig. 3C and D). Specifically, analyses reveal that all lineage 4

Bartonella gpsA genes form a monophyletic group that is

sister to extant ALOs. Together, they are nested within a

clade including ALOs’ closest sister groups: Providencia,

FIG. 1.—Role of GpsA in Bartonella phospholipid biosynthesis. Part of

the alphaproteobacterial phospholipid biosynthesis pathway is illustrated

based on Cronan (2003), Pereto et al. (2004), Spoering et al. (2006), Yeh

et al. (2008), and the KEGG pathway entry bhe00564 (glycerophospho-

lipid metabolism in B. henselae). The illustration highlights the three pos-

sible paths of obtaining G3P. The dashed lines represent the reactions

affected by ancient gene losses; and the bold line represents the reaction

affected by one ancient gene loss followed by three independent horizon-

tal regains in the evolutionary history of Bartonella.

FIG. 2.—Losses and gains of gpsA and metabolically related genes in

the evolutionary history of Bartonella. Schematically illustrated relation-

ships of Bartonella lineages based on phylogenomic and phylogenetic

analyses of the 28 Bartonella species (supplementary fig. S1,

Supplementary Material online). Topology is congruent with a recent phy-

logenomic study (Guy et al. 2013). Major monophyletic lineages (table 1)

were collapsed into triangles. Branch lengths are not drawn to scale. The

presence and origin of gpsA is indicated to the right of corresponding

lineages. Horizontally acquired genes are indicated by gray boxes, whereas

vertically inherited genes are indicated by white boxes. HGT events are

represented by incoming arrows, with the putative donor groups (if iden-

tifiable) labeled. Gene loss events are represented by outgoing arrows and

boxes with dashed outlines. Phylogenetic positions of losses and gains are

indicated by circles.
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FIG. 3.—Phylogenies of different versions of gpsA. Trees were reconstructed using Bayesian inference as implemented in MrBayes. Node labels (x/y)

represent Bayesian posterior probabilities (x%) computed in MrBayes and ML bootstrap support values (y% out of 1,000 replicates) computed in RAxML.

Asterisks (*) indicate 100% support. Bartonella clades are denoted in bold font. (A) Vertical inheritance history of gpsA (Rh) in Rhizobiales. Families

Bartonellaceae, Brucellaceae, Phyllobacteriaceae, and Rhizobiaceae are placed as ingroups and the other Rhizobiales organisms as outgroups, according
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Photorhabdus, Xenorhabdus, and Proteus. On the other hand,

B. australis gpsA nests within the Serratia clade, with its closest

sister group being Serratia symbiotica.

Genomic Environments of the gpsA Genes Support One
Ancestral Loss and Three Individual Transfers at the Base
of Major Bartonella Lineages

Rhizobiales-Derived gpsA (Rh)

The gpsA (Rh) gene (supplementary fig. S3A, Supplementary

Material online) is located within a gene cassette that typically

contains five tandemly arranged genes in the genome of B.

tamiae and those of close sister groups of Bartonella, including

Brucella, Ochrobactrum, Mesorhizobium, Agrobacterium,

Rhizobium, and Sinorhizobium. In all other Bartonella ge-

nomes, this cassette is still present, but consistently rhizobial

gpsA and its immediate downstream open reading frame

(ORF) (Ycil-like protein coding sequences) are absent in all

eubartonellae. Instead, this space is occupied by sequences

without identifiable ORFs. No sequence similarity can be de-

tected between those sequences and the original contents.

The above-described pattern is consistent with a single ances-

tral loss of gpsA followed by three gains (see below; fig. 2),

each of which coincides with the current lineage classification

of bartonellae (Engel et al. 2011). From all known bartonellae,

lineage 3 is the only clade in which all species are not only

missing the glpK and the glp genes, but it also never regained

gpsA (fig. 2).

Helicobacter-Derived gpsA (He)

The original gpsA (He) (fig. 4) is residing in a genomic envi-

ronment that is highly variable among Helicobacter species. In

most cases, it is upstream of the glyQ (glycyl-tRNA synthetase

subunit alpha) gene. In lineage 1 and 2 Bartonella genomes,

only the gpsA gene seems to have been transferred (fig. 2),

without its upstream and downstream neighbors from

Helicobacter. The gene is located in a genomic locus, where

the upstream side is a group of four ORFs ending with the hisS

(histidyl-tRNA synthetase) gene. The downstream side of gpsA

in lineage 2 Bartonella genomes is an rRNA operon, which is

typically present in all Bartonella genomes as two to three

copies (Viezens and Arvand 2008; Guy et al. 2013). The hor-

izontal transfer of gpsA (He) into lineages 1 and 2 seems to

have interrupted an ORF present in all bartonellae, which in

lineage 2 bartonellae is still present with a residual sequence

(fig. 4). Phylogenetic analysis of this ORF sampled across all

bartonellae mirrors current hypotheses of Bartonella species

evolution (Guy et al. 2013).

Arsenophonus-Derived gpsA (Ar)

In the genomes of Arsenophonus and other

Enterobacteriaceae, the original gpsA (Ar) gene (supplemen-

tary fig. S3B, Supplementary Material online) resides within a

cassette of four genes (secB–gpsA–cysE–cspR) right down-

stream of the O-antigen gene cluster, a frequently horizontally

transferred structure (Wildschutte et al. 2010; Ovchinnikova

et al. 2013). In lineage 4 Bartonella genomes, gpsA (Ar) seems

to have been transferred singularly into a genomic region that

is present in all bartonellae. Upstream of it is a cyo operon

(cyoA, B, C, D) encoding the cytochrome o ubiquinol oxidase,

glyQ

B. tamiae

hisSpgm

hisSpgm

hisSpgm

hisSpgm pheP

bioY bioMbioN

B. australis

hipA yjiJ

hisSpgm

pgm hisZ hisS tag xseAhisG

Helicobacter

FIG. 4.—Genomic context of gpsA (He) in Bartonella and other bac-

terial groups. Genes are represented by boxes. ORFs annotated as hypo-

thetical genes are either indicated by “?,” or by single letters (e.g., “M”

and “X,” see below). Lengths of genes and intergenic regions are not

drawn to scale. “X” represents an ORF that is disrupted by the insertion of

gpsA (He). “M” represents a multicopy ORF that exists only in B. bacilli-

formis and B. australis genomes.

FIG. 3.—Continued

to Gupta and Mok (2007). (B) Horizontal transfer of gpsA (He) from Helicobacter to L1 and L2 Bartonella (including an experimentally verified deer ked

sample). The tree is rooted at the common ancestor of Helicobacteraceae and Campylobacteraceae, according to Gupta (2006). (C) Horizontal transfers of

gpsA (Ar) from Arsenophonus-like bacteria to L4 Bartonella, and that of gpsA (Se) from Serratia to B. australis. The tree includes recipient Bartonella species,

representative Enterobacteriales groups, and two Arsenophonus-positive bat fly samples sequenced in this study. It is rooted to Vibrionales according to

Williams et al. (2010). Monophyletic groups are collapsed in triangles with nodal support values labeled to the right. Long branches are truncated and

indicated by two slashes (//). (D) Posttransfer evolutionary history of Arsenophonus-derived gpsA (Ar) in L4 Bartonella. This is an expansion of the L4 Bartonella

clade in (C). Experimentally verified insect samples are indicated by the insect names. Nodal support values of derived clades are omitted.

Horizontal gene transfer and ecological niche preference in Bartonella GBE

Genome Biol. Evol. 6(8):2156–2169. doi:10.1093/gbe/evu169 Advance Access publication August 8, 2014 2163

http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu169/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu169/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu169/-/DC1
CDS
-
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu169/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu169/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu169/-/DC1
-
-
-


a component of the aerobic respiratory chain (Reva et al.

2006). Downstream is a cluster of three genes (fabI1–fabA–

fabB) that are essential in fatty acid biosynthesis (Campbell

and Cronan 2001).

Serratia-Derived gpsA (Se)

In Serratia, gpsA is located in the homologous gene cassette to

other Enterobacteriaceae. In the B. australis genome, gpsA

was cotransferred with two other genes of the donor cassette

(grxC–secB–gpsA) and resides in a region that is highly variable

among Bartonella species. However, the structures upstream

and downstream of this highly variable region are relatively

constant in all Bartonella genomes (supplementary fig. S3C,

Supplementary Material online). Notably, several house-keep-

ing genes involved in lipid metabolism (plsX, fabH, accB, accC,

and glpD) (Campbell and Cronan 2001; Cronan 2003) are

located proximal to this region.

Other Genes in the Phospholipid Pathway

Meanwhile, an alternative route of G3P acquisition is intact:

The Ugp system (encoded by the operon ugpB-A-E-C), an ABC

transporter that imports G3P into cells (Brzoska et al. 1994), is

present in all extant Bartonella species. Phylogenetic analysis

reveals that this operon is vertically transmitted in the eubar-

tonella (supplementary fig. S4 and table S2, Supplementary

Material online).

G3P’s utilization in the phospholipid biosynthesis pathway

is mediated by PlsX (G3P acyltransferase), which converts G3P

into 1-acyl-G3P for subsequent steps. PlsX-deficient

Escherichia coli strains cannot synthesize a cell membrane

(Bell 1974). All Bartonella species maintain one copy of this

gene. The phylogenetic tree of plsX mirrors the species tree of

Bartonella (supplementary fig. S5 and table S2,

Supplementary Material online).

Molecular Evolution Analyses

All genes tested in this analysis maintain an ORF (regardless of

horizontal or vertical origin). Analyses testing for selective pres-

sure along branches and among sites were carried out on

trees of individual gpsA gene families and other metabolically

related genes (supplementary table S3, Supplementary

Material online). The following general patterns that apply

to all three gpsA families were observed: There are clear sig-

natures of global stabilizing selection operating on gpsA

genes, including on branches leading up to the nodes repre-

senting the transfers from putative donor groups

(Helicobacter, Arsenophonus [ALOs], and Serratia) to stem-

Bartonella of the major lineages (L1 + L2, L4, and B. australis,

respectively). Strong stabilizing selection was also observed in

horizontally acquired and subsequently vertically transmitted

copies of Bartonella gpsA. Within the Bartonella clades

(L1 + L2, L4, and B. australis alone) that represent the evolu-

tionary history of gpsA after acquisition, the o values are

significantly elevated compared with the tree backgrounds

(supplementary table S3, Supplementary Material online), sug-

gesting an accelerated rate of evolution after horizontal

acquisition.

Representative protein sequences of each version of gpsA

were aligned to the C. burnetii sequence, whose tertiary struc-

ture has been experimentally verified (fig. 5). The sequence

similarity among versions is generally low. However, functional

motifs and their adjacent sites exhibit strong conservation

across all gpsA sequences. None of these sites were predicted

to be under positive selection. The majority of sites that were

detected to be under significant positive (diversifying) selection

(27/31, P> 95%) have been identified in the gpsA of lineage

4 Bartonella (supplementary table S3, Supplementary Material

online, and fig. 5).

Applying the statistical methods outlined by Parker et al.

(2013) resulted in no significant signature of convergent evo-

lution in horizontally transferred gpsA versions across

Bartonella.

All other genes in the phospholipid pathway are under

strong stabilizing selection across all lineages in the bartonellae

(supplementary table S3, Supplementary Material online).

Phylogenetic Analyses of Bartonella

Phylogenomic analysis of Bartonella core genomes (23 species)

and of selected genes (28 species) recovers previously identi-

fied clades and relationships. Topologies of ingroup bartonel-

lae (eubartonellae) mirror results from the recent analysis of

Guy et al. (2013) (table 1 and supplementary fig. S1,

Supplementary Material online), challenging current

Bartonella classification, and supporting the idea of a derived

evolutionary position of B. bacilliformis (lineage 1, fig. 1).

Although there is some controversy about the relationship

of L1 and L2 bartonellae to each other (Engel et al. 2011;

Guy et al. 2013), the observed pattern of ORF disruption by

the Helicobacter-derived gpsA (see Results; fig. 4) provides a

solid piece of evidence of a single transfer event, and a shared

derived ancestry of L1 and L2 (Guy et al. 2013). Bartonella

tamiae occupies a strongly supported ancestral position to all

other bartonellae in the standard phylogenetic analysis. We

recovered a basal position for B. australis in eubartonellae in

both analyses, and the evolutionary sequence of lineage-spe-

cific diversification is strongly supported on all nodes.

Experimental Genotyping of Bartonella gpsA

GpsA sequences were successfully recovered from most of our

samples of blood-feeding insects (table 2). One bat fly sample

contained two gpsA copies—one copy of the known, and

expected Arsenophonus [ALO] endosymbiont of this group

(Morse et al. 2013), and one copy of Bartonella gpsA (Ar).

Helicobacter-type gpsA (He) was detected in a deer ked

(Lipoptena cervi) sample, and is phylogenetically nested

within the L2 Bartonella clade (fig. 3B). Arsenophonus-type
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gpsA (Ar) was found in most fleas (Siphonaptera) and in all bat

flies (Nycteribiidae and Streblidae), increasing the number of

known bartonellae vector species for both fleas, and bat flies.

All of these are distributed within the L4 Bartonella clade,

which shows species groupings generally consistent with pre-

vious analyses (supplementary fig. S1, Supplementary Material

online). Flea and bat fly host affiliations scatter throughout

previously known subclades. No Serratia-type gpsA (Se) was

detected in any of our samples (B. australis). The currently

known distribution of B. australis is restricted to Australia

(Fournier et al. 2007), and does not overlap with our sampling.

Several fleas did not yield any gpsA gene, despite

being positive for Bartonella gltA and 16S rRNA pertaining

to lineage 3.

FIG. 5.—Comparison of protein sequences of different GpsA versions. Alignment of full-length GpsA protein sequences to Coxiella burnettii. Nucleotide

positions are shaded by similarity from low (light) to high (dark) on a grayscale. GpsA proteins are aligned in pairs with a representative sequence from the

donor group and its Bartonella counterpart. Functional sites and motifs are boxed, as recorded in UniProtKB. Significantly positively selected sites predicted by

BEB are indicated by solid triangles.
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Discussion

Ancestral Intracellularity in Bartonella

Given the conserved nature of the bacterial phospholipid

pathway, the ancestral loss of glpK and the Glp system in

stem bartonellae followed by a gpsA loss at the base of eubar-

tonellae likely created an ancestral population of bartonellae

unable to use either glycerol or glucose metabolites (fig. 1).

Our analyses therefore suggest that the ancestors of extant

eubartonellae relied directly on G3P, which can be imported

into the cytoplasm by the Ugp system that remains intact in all

bartonellae. G3P is known to be an intermediate metabolite of

a strictly intracellular biochemical pathway in prokaryotic and

eukaryotic cells, and does not occur stably in the extracellular

environment (e.g., blood) (Cronan 2003; Spoering et al.

2006). Therefore, G3P capture and utilization by ancestral

bartonellae were likely accomplished by cytoplasmic associa-

tions to a living cell. Previous research has shown that in the

absence of readily available G3P, the ability of gpsA mutant

bacteria to form cell membranes is severely compromised,

resulting in the cessation of cell growth (Bell 1974; Cronan

and Bell 1974). This functional peculiarity may explain the slow

extracellular growth of the gpsA-less lineage 3 bartonellae on

blood agar and their more successful isolation in living cell lines

(Heller et al. 1997; Podsiadly et al. 2007). Specifically, the four

extant representatives of lineage 3 bartonellae (B. rochalimae,

B. clarridgeiae, B. sp. 1-1C, and B. sp. AR 15-3) are possibly the

surviving representatives of an ancient lineage, as they are still

lacking glpK, the Glp system, as well as gpsA. The ubiquitous

loss of these important genes in the phospholipid pathway

prior to the evolution of extant eubartonellae certainly sug-

gests that bartonellae had an early intracellular beginning.

Functional Importance of the Acquired gpsA Genes

Our results provide strong evidence that bartonellae gpsA was

acquired from three independent prokaryotic sources outside

of alpha-proteobacteria after a single initial loss at the base

of the eubartonellae lineage. The repeated retentions of

HGT-derived gpsA in the Bartonella genomes confirm the

functional importance of gpsA, in the context of the loss-

and-regain hypothesis of Doolittle et al. (2003). Based on an

array of studies related to HGT, it has been hypothesized that

genes that are selectively advantageous in the new organisms

have a higher probability of being retained (Kuo and Ochman

2009). Results suggest vertical inheritance and global stabiliz-

ing selection after gpsA transfer in Bartonella lineages, as well

as the maintenance of ORFs in all transferred genes. Taken

together with the previously confirmed expression of gpsA in

bartonellae (Saenz et al. 2007; Omasits et al. 2013), the above

evidence supports the functionality of the gpsA genes after

transfer. Furthermore, the protein sequence alignment shows

that all functionally important sites are conserved among

the HGT-derived gpsA versions (fig. 3). This, combined with

the overall stabilizing selection on horizontally transferred

gpsA genes (see Results), implies that the acquired genes

are likely to have inherited their original functional role in

the biosynthesis of bacterial membrane lipids. However, the

significant elevation of evolutionary rates in all three acquired

genes and the detection of specific sites under positive selec-

tion suggest that amid the overall stabilizing selection, the

genes may still undergo functional evolution to adapt to bar-

tonellae-specific metabolic pathways. Moreover, although dif-

ferent gpsA genes were inserted into distinct genomic loci, it is

notable that their genomic contexts typically include clusters

of genes that are involved in bacterial lipid metabolism (see

Results; fig. 4). This suggests that they have been integrated

into the existing transcriptional regulation machinery of lipid

metabolic genes, which may have facilitated their retention

(Lercher and Pal 2008). Bartonellae gpsA mutants are known

to result in an abacteremic phenotype (Saenz et al. 2007),

pointing to the importance of functional gpsA in pathogenic-

ity and hematogenous spread. Therefore, it is possible that the

horizontal reacquisitions of functional gpsA facilitated the he-

matogenous spread of bartonellae to diverse hosts through

blood-feeding vectors, as confirmed for the majority of extant

bartonellae.

Ancestral Host-Associations of Bartonellae

For two prokaryotic organisms to exchange genetic material

likely requires interactions in micro- or nanospace, either di-

rectly between bacteria (e.g., conjugation) or with transfer

agents (e.g., bacteriophages) in an appropriate environment

(Frost et al. 2005; Polz et al. 2013). Based on the high likeli-

hood of their intracellular beginnings (as inferred from the

ancestral losses in the phospholipid pathway), the identified

cases of HGT provide not only clues to infer past shared eco-

logical connections between Bartonella and other bacteria but

also point to putative ancestral hosts.

In line with this argumentation, we suggest that the two

transfers from Gammaproteobacteria are more likely to have

occurred in an arthropod. Specifically, the Arsenophonus-

derived transfer likely stems from endosymbionts exclusively

associated with arthropods. ALOs, the immediate well-

supported sister group of the bartonellae gpsA, is ecologically

versatile and widely distributed among arthropods, including

blood-feeders, such as ticks (Ixodidae), keds (Hippoboscidae),

and bat flies (Nycteribiidae) (Trowbridge et al. 2006; Novakova

et al. 2009; Morse et al. 2013; Duron et al. 2014). Among

blood-feeding parasites, Arsenophonus and like species are

still primary endosymbionts of extant hippoboscoid flies,

which are among the confirmed insect vectors of bartonellae

of lineages 4 and 2 (Halos et al. 2004; Morse et al. 2013).

Therefore, we propose that hippoboscoid flies may have

already been among the ancestral blood-feeding arthropod

hosts of bartonellae providing a biological reservoir condu-

cive for horizontal transfer of genes. Interestingly, the
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gammaproteobacterial ALOs have never been detected in

extant Siphonaptera, the insect order with the most

common and speciose Bartonella vectors (Chomel et al.

2009; Tsai et al. 2011; Pulliainen and Dehio 2012). Yet all

lineage 4 bartonellae transmitted by fleas carry the

Arsenophonus-derived gpsA (Ar) (fig. 3C). These facts imply

that the Arsenophonus-derived transfer of gpsA (Ar) to stem

L4 Bartonella likely did not occur in fleas, but that use of

Siphonaptera are likely evolutionarily derived vectors of line-

age 4 bartonellae.

The gpsA transfer from the enterobacterial Serratia involves

B. australis, which at present seems to be the only represen-

tative of its lineage, although this may change with better

sampling coverage. Serratia species colonize diverse habitats,

including plants, insects, and vertebrates (Grimont F and

Grimont PAD 2006). Given this wide, and largely underex-

plored host range, it is difficult to pinpoint a specific ancestral

host for the HGT exchange of the Serratia-derived gpsA in

Bartonella. However, the Serratia-derived gpsA of B. australis

strongly nests within a monophyletic clade containing Serratia

symbiotica, a known endosymbiont of aphids (Aphidoidea)

(fig. 3C). In insects Serratia may function as pathogen or sym-

biont, and have been shown to invade the hemocoel and the

intestinal tract (Grimont F and Grimont PAD 2006). In mam-

mals, infection often is opportunistic and rarely systemic

(unless previous immunosuppression exists) (Grimont F and

Grimont PAD 2006; Mahlen 2011). Therefore, it is conceivable

that an insect host was involved in this transfer too.

In contrast, we suggest that the horizontal integration of

Helicobacter-derived gpsA into a Bartonella genome likely

took place in a mammalian host, especially given that barto-

nellae gpsA (He) is firmly nested within the Helicobacter clade.

Helicobacter are predominantly mammalian pathogens

(Whary and Fox 2004; Rogers 2012), whose hosts overlap

well with the known host range of Bartonella species. In

their hosts helicobacter-type bacteria typically colonize the

gastrointestinal tract and liver, causing peptic ulcers, chronic

gastritis, cancer, and other diseases. Meanwhile, blood is a

secondary site for some species, where they adhere to eryth-

rocytes, which is also the dominant infection site of bartonel-

lae (Whary and Fox 2004; Dubois and Boren 2007).

It is important to note that the timing of each inferred

horizontal transfer coincides with the subsequent speciation

of extant bartonellae lineages, yet it is difficult to assess exactly

when these events happened on an evolutionary scale.

However, the transferred gpsA genes exclusively affect eubar-

tonellae (=every lineage after B. tamiae), and the transferred

genes are still closely related to extant prokaryotic groups,

allowing donor identification. This could be in part due to

strong functional constraints, but may also point to an evolu-

tionarily recent HGT relative to the total lineage age. This

would support a picture of a more recent diversification

with invertebrates and mammals, as suggested by the

hypothesis of “explosive radiation” of bartonellae by other

authors (Engel et al. 2011; Guy et al. 2013).

Extant Host Associations

Experimental Bartonella genotyping and subsequent phyloge-

netic analyses recover expected lineages given currently

known host and vector ranges (Halos et al. 2004; Morse

et al. 2012) (table 2), and confirm predictions of gpsA origin

based on phylogenomic analyses. Specifically, bartonellae of

deer keds (L. cervi, Hippoboscidae), which are known vectors

of lineage 2 bartonellae, contain Helicobacter-derived gpsA

(He) (fig. 3B). A diverse sampling of flea and bat fly species

shows Arsenophonus-derived gpsA (Ar), as is expected for

vectors of L4 Bartonella species (fig. 3D). Some samples

(e.g., Megabothris walkeri) closely cluster with known L4

Bartonella species (e.g., B. doshiae). Others, such as bartonel-

lae from Trichobius species, appear to be phylogenetically dis-

tant from any established Bartonella subclades, suggesting

putative novel species in bat flies, which has been proposed

previously (Billeter et al. 2012; Morse et al. 2012). These find-

ings call for more in-depth studies to characterize extant

Bartonella diversity.

The overall topology of the L4 gpsA (Ar) tree (fig. 3D) does

not mirror the phylogeny of either fleas (Whiting et al. 2008)

or bat flies (Dittmar et al. 2006; Petersen et al. 2007), sug-

gesting the absence of Bartonella-insect coevolution within

these two groups. For bat flies, this is in contrast to their pri-

mary endosymbionts, which exhibit notable coevolutionary

patterns with their fly hosts (Hosokawa et al. 2012; Morse

et al. 2013). Flea and bat fly bartonellae are interspersed

among each other in the tree, implying frequent horizontal

transmission of L4 bartonellae between insect vectors, and

low host specificity.

More detailed coevolutionary analyses of mammal–

Bartonella and insect–Bartonella relationships are warranted

given these findings.

Conclusions

Our study shows that the phospholipid pathway in Bartonella

has been affected by gene losses and gains throughout their

evolution. Specifically, glpK, the Glp system, and gpsA were

lost, but only gpsA genes were reacquired in eubartonellae by

three independent horizontal transfers from Gamma- and

Epsilonproteobacteria. Results from this discovery-based

study indicate a key impact of HGT on the ecological and

functional evolution in bartonellae.

Supplementary Material

Supplementary figures S1–S5 and tables S1–S3 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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